## Phase Equilibria in the Fe-Fe<sub>2</sub>O<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub> System at 1200 °C

Tadashi Sugihara, Noboru Kimizuka,\* and Takashi Katsura
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152
\*National Institute for Researches in Inorganic Materials, Sakuramura, Niiharigun, Ibaragi 300–31
(Received October 9, 1974)

The standard Gibbs energies of the reaction of EuFeO<sub>3</sub> and Fu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> were determined to be  $-63300\pm200$  cal and  $-297800\pm600$  cal respectively at 1200 °C by means of following reactions: Fe+1/2 Eu<sub>2</sub>O<sub>3</sub>+3/4 O<sub>2</sub>=EuFeO<sub>3</sub> and 5 Fe+3/2 Eu<sub>2</sub>O<sub>3</sub>+15/4 O<sub>2</sub>=Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, based on the phase equilibria in the Fe-Fe<sub>2</sub>O<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub> system.

Many works on the double oxides involving rare earth sesquioxide and iron oxide have been investigated from the standpoint of crystal chemistry and the magnetic properties of perovskite and garnet structures.<sup>1)</sup> Recently, Bedford and Catalano<sup>2)</sup> have confirmed the existence of EuO, Eu<sub>3</sub>O<sub>4</sub>, and Eu<sub>2</sub>O<sub>3</sub> at 1500 °C; they were first found by Bärnighausen.<sup>3)</sup> McCarthy and Fischer<sup>4)</sup> have also studied the Eu–Fe–O system at 1200 °C in a flowing argon atmosphere; they have also confirmed these compounds in addition to EuFeO<sub>3</sub> and Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>. However, very few studies have been done on the Gibbs energy of the reaction of lanthanoidiron -perovskite or -garnet.

Recently, Kimizuka and Katsura<sup>5)</sup> have determined the standard Gibbs energy of the reaction of LaFeO<sub>3</sub> from metallic iron, La<sub>2</sub>O<sub>3</sub>, and oxygen on the basis of the phase equilibria in the Fe–Fe<sub>2</sub>O<sub>3</sub>–La<sub>2</sub>O<sub>3</sub> system at 1204 °C. They<sup>6)</sup> have also established the phase equilibria in the Fe–Fe<sub>2</sub>O<sub>3</sub>–Y<sub>2</sub>O<sub>3</sub> system at 1200 °C and determined the Gibbs energy of the reactions of YFeO<sub>3</sub>, Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, and YFe<sub>2</sub>O<sub>4</sub>.

In the present study, we have determined the standard Gibbs energy of the reaction of  $EuFeO_3$  and  $Eu_3Fe_5O_{12}$  at 1200 °C on the basis of the phase equilibria in the  $Fe-Fe_2O_3-Eu_2O_3$  system.

## **Experimental**

Materials. High-purity-grade (99.9%) Eu<sub>2</sub>O<sub>3</sub> and guaranteed-reagent-grade Fe<sub>2</sub>O<sub>3</sub> were employed as the starting substances. Eu<sub>2</sub>O<sub>3</sub> was heated at 1200 °C in air for 2 days to obtain B-type Eu<sub>2</sub>O<sub>3</sub>. <sup>7)</sup> Fe<sub>2</sub>O<sub>3</sub> was heated at 900 °C in air for 1 day. The subsequent procedures to obtain the sintered mixtures were the same as those described in a previous paper. <sup>5)</sup>

Apparatus and Procedures. The quenching and thermogravimetric methods were adopted in the present study; the details of the procedures have been described by Kimizuka and Katsura. The weight of the sample in oxygen was chosen as the reference for thermogravimetry. The equilibrium composition was determined by means of two side reactions. The quenching method employed in the present study is the same as that described in a previous paper, the phases in quenched samples were identified by the powder X-ray diffraction method, with Mn-filtered Fe- $K\alpha$  radiation. The Fe<sup>2+</sup>/Fe<sup>3+</sup> ratio in the quenched nonstoichiometric EuFeO<sub>3</sub> was determined by the wet chemical method.

## Results and Discussion

Phase Equilibria. The equilibrium data at 1200 °C are summarized in Table 1 and are illustrated in Fig. 1. The following phases were stable under the present ex-

Table 1. Data for equilibria in the Fe-Fe<sub>2</sub>O<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub> system at 1200°C

| $\mathrm{Fe}\mathrm{-Fe_2O_3}\mathrm{-Eu_2O_3}$ system at $1200^{\circ}\mathrm{C}$ |                 |                                      |                    |                  |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------|--------------------------------------|--------------------|------------------|--|--|--|--|
| $\log P_{\rm O_2} \ (\pm 0.02)$                                                    | Fe              | ${\rm Fe_2O_3} \atop { m (mole~\%)}$ | $\mathrm{Eu_2O_3}$ | Phases           |  |  |  |  |
| 0.00                                                                               | 0.00            | 38.00                                | 62.00              | E + Pv           |  |  |  |  |
|                                                                                    | 0.00            | 50.00                                | 50.00              | Pv               |  |  |  |  |
|                                                                                    | 0.00            | 57.00                                | 43.00              | Pv + G           |  |  |  |  |
|                                                                                    | 0.00            | 62.50                                | 37.50              | $\mathbf{G}$     |  |  |  |  |
|                                                                                    | 0.00            | 78.56                                | 21.44              | H + G            |  |  |  |  |
|                                                                                    | 0.00            | 80.00                                | 20.00              | H + G            |  |  |  |  |
|                                                                                    | 0.00            | 90.00                                | 10.00              | H + G            |  |  |  |  |
| 3.88                                                                               | 0.00            | 57.00                                | 43.00              | Pv+G             |  |  |  |  |
| 3.00                                                                               | 0.00            | 62.50                                | 37.50              | G G              |  |  |  |  |
|                                                                                    | 10.14           | 70.92                                | 18.94              | M+G              |  |  |  |  |
|                                                                                    | 9.36            | 70.20                                | 20.44              | M+G              |  |  |  |  |
|                                                                                    | 15.05           | 75.70                                | 9.25               | M+G              |  |  |  |  |
| 9.14                                                                               | 3.75            | 53.39                                | 42.91              | M + Pv           |  |  |  |  |
|                                                                                    | 6.01            | 57.61                                | 36.38              | M + Pv           |  |  |  |  |
|                                                                                    | 12.50           | 67.40                                | 20.10              | M + Pv           |  |  |  |  |
|                                                                                    | 13.10           | 68.21                                | 18.69              | M + Pv           |  |  |  |  |
|                                                                                    | 16.92           | 73.93                                | 9.15               | M + Pv           |  |  |  |  |
| 9.27                                                                               | 6.42            | 51.96                                | 41.62              | W + Pv           |  |  |  |  |
|                                                                                    | 11.01           | 53.55                                | 35.44              | W + Pv           |  |  |  |  |
|                                                                                    | 23.39           | 57.68                                | 18.93              | W + Pv           |  |  |  |  |
|                                                                                    | 24.26           | 58.16                                | 17.58              | W + Pv           |  |  |  |  |
|                                                                                    | 30.96           | 60.60                                | 8.44               | W + Pv           |  |  |  |  |
| 9.80                                                                               | 25.44           | 57.10                                | 17.46              | W + Pv           |  |  |  |  |
| 10.26                                                                              | 26.68           | 55.99                                | 17.33              | W + Pv           |  |  |  |  |
| 10.82                                                                              | 28.06           | 54.74                                | 17.20              | W + Pv           |  |  |  |  |
| 11.26                                                                              | 29.31           | 53.62                                | 17.07              | W + Pv           |  |  |  |  |
| 11.92                                                                              | $8.45 \\ 14.47$ | 50.37 $50.74$                        | $41.18 \\ 34.79$   | W + Pv<br>W + Pv |  |  |  |  |
|                                                                                    | 29.29           | 50.74 $52.42$                        | 18.31              | W + Pv<br>W + Pv |  |  |  |  |
|                                                                                    | 30.65           | 52.41                                | 16.91              | W + Pv           |  |  |  |  |
|                                                                                    | 38.49           | 53.44                                | 8.07               | W + Pv           |  |  |  |  |
| 12.09                                                                              | 23.59           | 38.48                                | 37.93              | Fe + Pv          |  |  |  |  |
| 12100                                                                              | 40.10           | 29.92                                | 29.98              | Fe + Pv          |  |  |  |  |
|                                                                                    | 72.25           | 14.05                                | 13.70              | Fe + Pv          |  |  |  |  |
|                                                                                    | 75.15           | 12.36                                | 22.49              | Fe + Pv          |  |  |  |  |
|                                                                                    | 88.75           | 5.69                                 | 5.56               | Fe + Pv          |  |  |  |  |
| 12.51                                                                              | 0.69            | 37.53                                | 61.78              | E + Pv           |  |  |  |  |
|                                                                                    | 1.58            | 48.84                                | 49.58              | Pv               |  |  |  |  |
| 13.02                                                                              | 76.69           | 0.19                                 | 23.12              | Fe + E           |  |  |  |  |
|                                                                                    | 87.61           | 0.34                                 | 12.05              | Fe + E           |  |  |  |  |
|                                                                                    | 88.71           | 0.16                                 | 11.13              | Fe + E           |  |  |  |  |
|                                                                                    | 94.56           | 0.17                                 | 5.27               | Fe + E           |  |  |  |  |
| 15.80                                                                              | 66.66           | 0.01                                 | 33.33              | Fe + E           |  |  |  |  |
|                                                                                    | 54.97           | 0.07                                 | 44.96              | Fe+E             |  |  |  |  |
|                                                                                    | 72.22           | 0.31                                 | 27.47              | Fe + E           |  |  |  |  |

Abbreviations have the following meaning:  $E=Eu_2O_3$ ,  $Pv=EuFeO_3$ ,  $G=Eu_3Fe_5O_{12}$ ,  $H=Fe_2O_3$ ,  $M=Fe_3O_4$ , W=FeO, Fe=metallic iron.

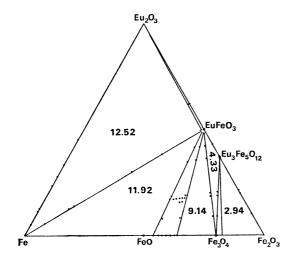



Fig. 1. Phase equilibria in the Fe-Fe<sub>2</sub>O<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub> system at 1200 °C.

Numbers in the Figure mean values of  $-\log P_{\rm O_2}$  at which three crystalline phases are in equilibrium state. Small dots show the experimental results given in Table 1.

perimental conditions: Europium sesquioxide (Eu<sub>2</sub>O<sub>3</sub>), hematite (Fe<sub>2</sub>O<sub>3</sub>), magnetite (Fe<sub>3</sub>O<sub>4</sub>), wüstite (FeO), metallic iron (γ-Fe), europium-iron-perovskite (Eu-FeO<sub>3</sub>), and europium-iron-garnet (Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>). The equilibria among the three condensed phases are as follows: (1) EuFeO<sub>3</sub>, Eu<sub>2</sub>O<sub>3</sub>, and metallic iron, (2) EuFeO<sub>3</sub>, wüstite, and metallic iron, (3) EuFeO<sub>3</sub>, magnetite, and wüstite, (4) EuFeO<sub>3</sub> Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, and magnetite, and (5) Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, magnetite, and hematite. The following phases were characterized with respect to the stoichiometry: (a) Pure Eu<sub>2</sub>O<sub>3</sub> was stable down to an oxygen partial pressure of 10-15.80 atm. However, it showed a small degree of non-stoichiometry at 10-15.80 atm. McCarthy and White9) have reported the approximate phase relation of the Eu-Eu<sub>2</sub>O<sub>3</sub> system at elevated temperatures up to 2200 °C; they showed the non-stoichiometry for Eu<sub>2</sub>O<sub>3</sub> at 1200 °C and about 10<sup>-15</sup> atm Po<sub>2</sub>, but they did not ascertain the extent of this non-stoichiometry. In the present study, by means of the thermogravimetric method, we determined the composition of the non-stoichiometric Eu<sub>2</sub>O<sub>3</sub> phase to be  $Eu_2O_{2.98\pm0.02}$  at  $10^{-15.80}$  atm  $P_{0_2}$ : The lattice constants of both stoichiometric and non-stoichiometric Eu<sub>2</sub>O<sub>3</sub> are given in Table 2. It is supposed that the non-stoichiometric Eu<sub>2</sub>O<sub>3</sub> has a larger unit cell volume than the stoichiometric Eu<sub>2</sub>O<sub>3</sub>; this may be caused by the substitution of Eu2+ for Eu3+. (b) The deviation from the stoichiometric composition of Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> was not observed, and the lattice constants of the respective Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> compounds equilibrated with Fe<sub>2</sub>O<sub>3</sub>, EuFeO<sub>3</sub> and with Fe<sub>3</sub>O<sub>4</sub> were identical with each other. The values of stoichiometric Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> are identical with those obtained by Espinosa. (c) EuFeO<sub>3</sub> showed a significant deviation from the stoichiometry at relatively low oxygen partial pressures. The degree of nonstoichiometry was determined by both thermogravimetry and wet chemical analysis. These results were consistent with each other. The maximum deviation was

Table 2. Lattice constants of  $Eu_2O_3$  and  $EuFeO_3$ a)  $Eu_2O_3$  (monoclinic B-type)

| Lattice<br>constants | Stoichiometric<br>Eu <sub>2</sub> O <sub>3</sub> | Non-stoichiometric<br>Eu <sub>2</sub> O <sub>3</sub> | Hoekstra <sup>12)</sup> |
|----------------------|--------------------------------------------------|------------------------------------------------------|-------------------------|
| a (Å)                | 14.102±0.005                                     | 14.113±0.004                                         | 14.12                   |
| <b>b</b> (Å)         | $3.601 \pm 0.001$                                | $3.603 \pm 0.001$                                    | 3.600                   |
| c (Å)                | $8.806 \pm 0.004$                                | $8.808 \pm 0.003$                                    | 8.801                   |
| $\beta(\deg)$        | $100.02 \pm 0.3$                                 | $100.05 \pm 0.2$                                     | 99.98                   |
| $V({ m \AA}^3)$      | $440.3 \pm 0.3$                                  | $441.0 \pm 0.2$                                      |                         |

b) EuFeO<sub>3</sub> (Space group: D<sub>2h</sub>-Pbnm, orthorhombic perovskite structure)

| Lattice<br>constants | coexis | $FeO_3$ ting with $Eu_3Fe_5O_{12}$ | Non-stoichio-<br>metric<br>EuFeO <sub>3</sub> | Stoichio-<br>metric<br>EuFeO <sub>3</sub> | and   |
|----------------------|--------|------------------------------------|-----------------------------------------------|-------------------------------------------|-------|
| a (Å)                | 5.373  | 5.371                              | 5.373                                         | 5.373                                     | 5.371 |
| b (Å)                | 5.607  | 5.605                              | 5.607                                         | 5.604                                     | 5.611 |
| c (Å)                | 7.683  | 7.684                              | 7.685                                         | 7.684                                     | 7.686 |
| $V~({ m \AA}^3)$     | 231.4  | 231.3                              | 231.5                                         | 231.3                                     | 231.6 |

Deviations in a, b, and c are  $\pm 0.001$  by the least squares method, and those of  $V \pm 0.1$ .

determined to be EuFeO<sub>2.976</sub> at an oxygen partial pressure of  $10^{-12.52}$  atm; at this point the non-stoichiometric EuFeO<sub>3</sub> was in equilibrium with both metallic iron and stoichiometric Eu<sub>2</sub>O<sub>3</sub>. EuFeO<sub>3</sub> shows a small but equivocal solubility of the three components. Since we could not determine the exact boundary of the EuFeO<sub>3</sub> field, the EuFeO<sub>3</sub> field was approximately bounded by the dotted line shown in Fig. 1. The lattice constants of EuFeO<sub>3</sub> in equilibrium with Eu<sub>2</sub>O<sub>3</sub> and Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, and of non-stoichiometric EuFeO<sub>3</sub> with the composition of EuFeO<sub>2.976</sub>, were compared with those of stoichiometric EuFeO<sub>3</sub> given in Table 2.

(2) Calculation of the Standard Gibbs Energy of the Reaction of EuFeO<sub>3</sub> and Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>. On the basis of the phase equilibria, we may determine the following two standard Gibbs energies of the reaction of EuFeO<sub>3</sub> and Eu<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> from metallic iron, Eu<sub>2</sub>O<sub>3</sub>, and oxygen:

$$Fe + 1/2 Eu_2O_3 + 3/4 O_2 = EuFeO_3$$
 (1)

$$5 \text{ Fe} + 3/2 \text{ Eu}_2\text{O}_3 + 15/4 \text{ O}_2 = \text{Eu}_3\text{Fe}_5\text{O}_{12}$$
 (2)

Since the  ${\rm EuFeO_3}$  component in equilibrium with metallic iron and  ${\rm Eu_2O_3}$  has the composition of  ${\rm EuFeO_{2.976}}$ , it is convenient to choose the reference activity of the  ${\rm EuFeO_3}$  component as unity at this composition. As has been described before, the  ${\rm Eu_2O_3}$  component had a small compositional variation at lower oxygen partial pressures. However, the composition of  ${\rm Eu_2O_3}$  was nearly stoichiometric at an oxygen partial pressure of  $10^{-12.52}$  atm, at which Reaction (1) was in the equilibrium state. Thus, with reference to Eq. (1), we may determine the standard Gibbs energy of the reaction of  ${\rm EuFeO_3}$  as follows

$$\varDelta G^0(1) = 3/4 \, RT \ln P_{\rm O_2} = -63300 \pm 200 \, {\rm cal \cdot mol^{-1}},$$

where R and T indicate the gas constant and the absolute temperature respectively. The experimental error was estimated on the basis of the fluctuations of both temperature and the oxygen partial pressure.

Because the stoichiometric  $\mathrm{Eu_3Fe_5O_{12}}$  was in equilibrium with both stoichiometric  $\mathrm{EuFeO_3}$  and  $\mathrm{Fe_3O_4}$  at an oxygen partial pressure of  $10^{-4.33}$  atm, the standard Gibbs energy change, referred to the following equation (3), may be calculated to be  $-4900\pm200$  cal:

$$3 \text{ EuFeO}_3 + 2/3 \text{ Fe}_3 \text{O}_4 + 1/6 \text{ O}_2 = \text{Eu}_3 \text{Fe}_5 \text{O}_{12}$$
 (3)

According to Darken and Gurry, <sup>11</sup>) the activity of metallic iron in stoichiometric magnetite in equilibrium with wüstite is  $10^{-1.545}$  at  $1200\,^{\circ}\mathrm{C}$ , while the oxygen partial pressure related to the wüstite-magnetite equilibrium in  $10^{-9.14}$  atm. Thus, the standard Gibbs energy of the formation of  $\mathrm{Fe_3O_4}$ ,  $\Delta G^0(4)$ , referred to the following equation (4) may be calculated to be  $-154500\pm300\,\mathrm{cal}$  at  $1200\,^{\circ}\mathrm{C}$ :

$$3 \operatorname{Fe} + 2 \operatorname{O}_{2} = \operatorname{Fe}_{3} \operatorname{O}_{4} \tag{4}$$

By adding  $\Delta G^0(3)$ ,  $2/3\Delta G^0(4)$ , and  $3\Delta G^0(1)$ , we obtain the standard Gibbs energy of the reaction of  $\mathrm{Eu_3Fe_5O_{12}}$ ,  $\Delta G^0(2)$ , referred to Equation (2), as  $-297800\pm600$  cal.

It is interesting to compare the present Gibbs energy data with those of LaFeO<sub>3</sub>, YFeO<sub>3</sub>, and Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> which have been determined by Kimizuka and Katsura.<sup>5,6</sup>) Comparing these data, we may observe that the standard Gibbs energy of the reaction of lanthanoid-iron perovskite from metallic iron, lanthanoid sesquioxide, and oxygen increases with decrease in the ionic radii of lanthanoid ions. The relationship between the ionic radii and the Gibbs energy will be discussed in more detail in the near future.

The authors wish to express their thanks to Dr. Kenzo Kitayama and Mr. Toshimori Sekine, Tokyo Institute of Technology.

## References

- 1) G. Brauer, in "Progress in the Science and Technology of the Rare Earths," (L. Eyring, Ed.), Vol. 1, pp. 152—166, Pergamon Press, New York (1964): R. S. Roth, *ibid.*, pp. 167—210: E. F. Westrum, *ibid.*, pp. 310—350: N. A. Toropov, V. P. Barzakovskii, V. V. Lapin, and N. N. Kurtseva, in "Handbook of Phase Diagrams of Silicate Systems," Vol. 1, pp. 603—610, translated from Russian, Israel Program for Scientific Translations, Israel (1972): R. S. Roth, *J. Res. Natl. Bur. Stand.*, 58, No. 2, 75 (1957): R. S. Roth and S. J. Schneider, *J. Res. Nat. Bur. Stand.*, 64A, No. 4, 309 (1960): S. J. Schneider, R. S. Roth, and J. L. Waring, *ibid.*, 65A, No. 4, 345 (1961).
- 2) R. G. Bedford and E. Catanalo, J. Solid State Chem., 3, 112 (1971).
  - 3) H. Bärnighausen, J. Prakt. Chem., 34, 1 (1965).
- 4) G. J. McCarthy and R. D. Fischer, *J. Solid State Chem.*, **4**, 340 (1972).
- 5) N. Kimizuka and T. Katsura, This Bulletin, 47, 1801 (1974).
- 6) N. Kimizuka and Katsura, J. Solid State Chem., 13, 176 (1975). Standard Free Energy of Formation of YFeO<sub>3</sub>,  $Y_3Fe_5O_{12}$ , and a New Compound YFe<sub>2</sub>O<sub>4</sub> in the Fe-Fe<sub>2</sub>O<sub>3</sub>-Y<sub>2</sub>O<sub>3</sub> system at 1200 °C.
- 7) R. S. Roth and S. J. Schneider, J. Res. Nat. Bur. Stand., **64A**, 309 (1960).
- 8) I. Iwasaki, T. Katsura, M. Yoshida, and T. Tarutani, Bunseki Kagaku, 6, 211 (1957).
- 9) G. J. McCarthy and W. B. White, J. Less Common Metals., 22, 409 (1970).
- 10) G. P. Espinosa, J. Chem. Phys., 37, 2344 (1962).
- 11) L. S. Darken and R. W. Gurry, J. Am. Chem. Soc., 67, 1398 (1945).
- 12) H. R. Hoekstra, Inorg. Chem., 5, 754 (1966).
- 13) S. Geller and E. A. Wood, Acta Crystallogr., 9, 563 (1956).